Josh 的复习总结之数字信号处理(Part 6——数字滤波器的基本结构)

闲来无事编点程 同时被 2 个专栏收录
7 篇文章 1 订阅
7 篇文章 1 订阅


《Josh 的复习总结之数字信号处理》系列文章目录:

      Part 1——离散时间信号和系统分析基础
      Part 2——离散傅里叶级数 DFS
      Part 3——离散傅里叶变换 DFT
      Part 4——快速傅里叶变换 FFT
      Part 5——部分 FFT 蝶形图
👉 Part 6——数字滤波器的基本结构
      Part 7——数字滤波器设计


1. 基本运算单元的结构图表示

基本运算单元方框图流图
单位延时单位延时方框图单位延时流图
常数乘法器常数乘法器方框图常数乘法器流图
加法器加法器方框图加法器流图

2. IIR(Infinite Impulse Response)数字滤波器的基本结构

  IIR 数字滤波器的结构特点
系 统 函 数 : H ( z ) = Y ( z ) X ( z ) = ∑ k = 0 M b k z − k 1 − ∑ k = 1 N a k z − k 差 分 方 程 : y ( n ) = ∑ k = 1 N a k y ( n − k ) + ∑ k = 0 M b k x ( n − k ) \begin{aligned} &系统函数:H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\frac{\displaystyle\sum_{k=0}^{M}{b_kz^{-k}}}{1-\displaystyle\sum_{k=1}^{N}{a_kz^{-k}}}\\ &差分方程:y\left(n\right)=\sum_{k=1}^{N}{a_ky\left(n-k\right)}+\sum_{k=0}^{M}{b_kx\left(n-k\right)} \end{aligned} H(z)=X(z)Y(z)=1k=1Nakzkk=0Mbkzky(n)=k=1Naky(nk)+k=0Mbkx(nk)

  • 系统的单位脉冲响应 h ( n ) h\left(n\right) h(n) 无限长;
  • 系统函数 H ( z ) H\left(z\right) H(z) 在有限 z z z 平面( 0 < ∣ z ∣ < ∞ 0<\left|z\right|<\infty 0<z<)上有极点存在;
  • 存在输出到输入的反馈,递归型结构:直接Ⅰ、Ⅱ型,级、并联型。

2.1 直接Ⅰ型

  将系统函数写为
H ( z ) = Y ( z ) X ( z ) = ∑ k = 0 M b k z − k 1 − ∑ k = 1 N a k z − k = ∑ k = 0 M b k z − k ⏟ H 1 ( z ) × ( 1 − ∑ k = 1 N a k z − k ) − 1 ⏟ H 2 ( z ) H\left( z \right) =\frac{Y\left( z \right)}{X\left( z \right)}=\frac{\displaystyle\sum_{k=0}^M{b_kz^{-k}}}{1-\displaystyle\sum_{k=1}^N{a_kz^{-k}}}=\underset{H_1\left( z \right)}{\underbrace{\sum_{k=0}^M{b_kz^{-k}}}}\times \underset{H_2\left( z \right)}{\underbrace{\left( 1-\displaystyle\sum_{k=1}^N{a_kz^{-k}} \right) ^{-1}}} H(z)=X(z)Y(z)=1k=1Nakzkk=0Mbkzk=H1(z) k=0Mbkzk×H2(z) (1k=1Nakzk)1则系统框图可表示为
直接Ⅰ型系统框图
由此可得系统的两级输入输出的微分方程
H 1 ( z ) = ∑ k = 0 M b k z − k = U ( z ) X ( z ) ⟹ u ( n ) = ∑ k = 0 M b k x ( n − k ) H_1\left(z\right)=\sum_{k=0}^{M}{b_kz^{-k}}=\frac{U\left(z\right)}{X\left(z\right)}\Longrightarrow u\left(n\right)=\sum_{k=0}^{M}{b_kx\left(n-k\right)} H1(z)=k=0Mbkzk=X(z)U(z)u(n)=k=0Mbkx(nk) H 2 ( z ) = ( 1 − ∑ k = 1 N a k z − k ) − 1 = Y ( z ) U ( z ) ⟹ y ( n ) = u ( n ) + ∑ k = 1 M a k y ( n − k ) H_2\left(z\right)=\left(1-\sum_{k=1}^{N}{a_kz^{-k}}\right)^{-1}=\frac{Y\left(z\right)}{U\left(z\right)}\Longrightarrow y\left(n\right)=u\left(n\right)+\sum_{k=1}^{M}{a_ky\left(n-k\right)} H2(z)=(1k=1Nakzk)1=U(z)Y(z)y(n)=u(n)+k=1Maky(nk)由微分方程可得直接Ⅰ型 IIR 滤波器的流图
直接Ⅰ型 IIR 滤波器的流图

2.2 直接Ⅱ型(典范型)

  系统函数仍为
H ( z ) = Y ( z ) X ( z ) = ∑ k = 0 M b k z − k 1 − ∑ k = 1 N a k z − k = ∑ k = 0 M b k z − k ⏟ H 1 ( z ) × ( 1 − ∑ k = 1 N a k z − k ) − 1 ⏟ H 2 ( z ) H\left( z \right) =\frac{Y\left( z \right)}{X\left( z \right)}=\frac{\displaystyle\sum_{k=0}^M{b_kz^{-k}}}{1-\displaystyle\sum_{k=1}^N{a_kz^{-k}}}=\underset{H_1\left( z \right)}{\underbrace{\sum_{k=0}^M{b_kz^{-k}}}}\times \underset{H_2\left( z \right)}{\underbrace{\left( 1-\displaystyle\sum_{k=1}^N{a_kz^{-k}} \right) ^{-1}}} H(z)=X(z)Y(z)=1k=1Nakzkk=0Mbkzk=H1(z) k=0Mbkzk×H2(z) (1k=1Nakzk)1将系统框图变为
直接Ⅱ型系统框图
由此可得系统的两级输入输出的微分方程
H 2 ( z ) = ( 1 − ∑ k = 1 N a k z − k ) − 1 = W ( z ) X ( z ) ⟹ w ( n ) = x ( n ) + ∑ k = 1 M a k x ( n − k ) H_2\left(z\right)=\left(1-\sum_{k=1}^{N}{a_kz^{-k}}\right)^{-1}=\frac{W\left(z\right)}{X\left(z\right)}\Longrightarrow w\left(n\right)=x\left(n\right)+\sum_{k=1}^{M}{a_kx\left(n-k\right)} H2(z)=(1k=1Nakzk)1=X(z)W(z)w(n)=x(n)+k=1Makx(nk) H 1 ( z ) = ∑ k = 0 M b k z − k = Y ( z ) W ( z ) ⟹ y ( n ) = ∑ k = 0 M b k w ( n − k ) H_1\left(z\right)=\sum_{k=0}^{M}{b_kz^{-k}}=\frac{Y\left(z\right)}{W\left(z\right)}\Longrightarrow y\left(n\right)=\sum_{k=0}^{M}{b_kw\left(n-k\right)} H1(z)=k=0Mbkzk=W(z)Y(z)y(n)=k=0Mbkw(nk)由微分方程可得直接Ⅱ型 IIR 滤波器的流图
直接Ⅱ型 IIR 滤波器的流图

  • 直接型 IIR 滤波器的结构特点

    直接Ⅰ型直接Ⅱ型
    不同点两个网络级联:第一个横向结构 M 节延时网络实现零点,第二个有反馈的 N 节延时网络实现极点。两个网络级联:第一个有反馈的 N 节延时网络实现极点,第二个横向结构 M 节延时网络实现零点。
    延时单元数:N + M
    乘法器数:N + M + 1
    加法器数:1
    延时单元数:max{N , M}
    乘法器数:N + M + 1
    加法器数:2
    相同点系数 ak , bk 不能直接决定单个零极点,因而不能很好地进行滤波器性能控制。
    极点对系数(零极点的位置)变化过于灵敏,从而使系统频率响应对系数变化过于灵敏,也就是对有限精度(有限字长)运算过于灵敏,容易出现不稳定或产生较大误差。
    计算的累积误差较大

2.3 级联型

  将系统函数按零极点因式分解,可表示为
H ( z ) = ∑ k = 0 M b k z − k 1 − ∑ k = 1 N a k z − k = A ∏ k = 1 M 1 ( 1 − p k z − 1 ) ∏ k = 1 M 2 ( 1 − q k z − 1 ) ( 1 − q k ∗ z − 1 ) ∏ k = 1 N 1 ( 1 − c k z − 1 ) ∏ k = 1 N 2 ( 1 − d k z − 1 ) ( 1 − d k ∗ z − 1 ) H\left(z\right)=\frac{\displaystyle\sum_{k=0}^{M}{b_kz^{-k}}}{1-\displaystyle\sum_{k=1}^{N}{a_kz^{-k}}}=A\frac{\displaystyle\prod_{k=1}^{M_1}\left(1-p_kz^{-1}\right)\displaystyle\prod_{k=1}^{M_2}\left(1-q_kz^{-1}\right)\left(1-q_k^\ast z^{-1}\right)}{\displaystyle\prod_{k=1}^{N_1}\left(1-c_kz^{-1}\right)\displaystyle\prod_{k=1}^{N_2}\left(1-d_kz^{-1}\right)\left(1-d_k^\ast z^{-1}\right)} H(z)=1k=1Nakzkk=0Mbkzk=Ak=1N1(1ckz1)k=1N2(1dkz1)(1dkz1)k=1M1(1pkz1)k=1M2(1qkz1)(1qkz1)其中 A A A 为常数, M = M 1 + 2 M 2 M=M_1+2M_2 M=M1+2M2 N = N 1 + 2 N 2 N=N_1+2N_2 N=N1+2N2 p k , c k p_k,c_k pk,ck分别为实数零、极点, q k , q k ∗ q_k,q_k^\ast qk,qk d k , d k ∗ d_k,d_k^\ast dk,dk 分别为复共轭零、极点。将共轭成对的复数零、极点合并为为实系数二阶多项式,得
H ( z ) = A ∏ k = 1 L [ 1 + β 1 k z − 1 + β 2 k z − 2 1 − α 1 k z − 1 − α 2 k z − 2 ] = A ∏ k = 1 L H k ( z ) ,    L = ⌊ N + 1 2 ⌋ H\left(z\right)=A\prod_{k=1}^{L}\left[\frac{1+\beta_{1k}z^{-1}+\beta_{2k}z^{-2}}{1-\alpha_{1k}z^{-1}-\alpha_{2k}z^{-2}}\right]=A\prod_{k=1}^{L}{H_k\left(z\right)},\ \ L=\left\lfloor\frac{N+1}{2}\right\rfloor H(z)=Ak=1L[1α1kz1α2kz21+β1kz1+β2kz2]=Ak=1LHk(z),  L=2N+1则系统框图可表示为
级联型 IIR 滤波器的系统框图
进一步可得级联型 IIR 滤波器的流图
级联型 IIR 滤波器的流图

  • 级联型 IIR 滤波器的结构特点
    • 分别调整系数 β 1 k , β 2 k \beta_{1k},\beta_{2k} β1k,β2k α 1 k , α 2 k \alpha_{1k},\alpha_{2k} α1k,α2k,能单独调整滤波器的第k对零、极点,而不影响其它零、极点,由此,可以方便的调整滤波器的频响性能。
    • 运算的累积误差较小、所需存储单元少,可实现时分复用、组合方式多等。

2.4 并联型

  将系统函数展开成部分分式的形式,可表示为
H ( z ) = ∑ k = 0 M − N G k z − k + ∑ k = 1 N 1 A k 1 − g k z − 1 + ∑ k = 1 N 2 β 0 k + β 1 k z − 1 1 − α 1 k z − 1 − α 2 k z − 2 H\left(z\right)=\sum_{k=0}^{M-N}{G_kz^{-k}}+\sum_{k=1}^{N_1}\frac{A_k}{1-g_kz^{-1}}+\sum_{k=1}^{N_2}\frac{\beta_{0k}+\beta_{1k}z^{-1}}{1-\alpha_{1k}z^{-1}-\alpha_{2k}z^{-2}} H(z)=k=0MNGkzk+k=1N11gkz1Ak+k=1N21α1kz1α2kz2β0k+β1kz1其中 G k , A k , g k , β 0 k , β 1 k , α 1 k , α 2 k G_k,A_k,g_k,\beta_{0k},\beta_{1k},\alpha_{1k},\alpha_{2k} Gk,Ak,gk,β0k,β1k,α1k,α2k 均为实数。且当 M < N M<N M<N 时,上式不包含 ∑ k = 0 M − N G k z − k \displaystyle\sum_{k=0}^{M-N}{G_kz^{-k}} k=0MNGkzk 项;当 M = N M=N M=N 时,上式变为
H ( z ) = G 0 + ∑ k = 1 N 1 A k 1 − g k z − 1 + ∑ k = 1 N 2 β 0 k + β 1 k z − 1 1 − α 1 k z − 1 − α 2 k z − 2   ( M = N ) H\left(z\right)=G_0+\sum_{k=1}^{N_1}\frac{A_k}{1-g_kz^{-1}}+\sum_{k=1}^{N_2}\frac{\beta_{0k}+\beta_{1k}z^{-1}}{1-\alpha_{1k}z^{-1}-\alpha_{2k}z^{-2}}\ (M=N) H(z)=G0+k=1N11gkz1Ak+k=1N21α1kz1α2kz2β0k+β1kz1 (M=N)可得 M = N M=N M=N 时并联型 IIR 滤波器的系统框图和流图
并联型 IIR 滤波器的系统框图和流图

  • 并联型IIR滤波器的结构特点
    • 通过调整系数 α 1 k , α 2 k \alpha_{1k},\alpha_{2k} α1k,α2k,可单独调整一对极点位置,但不能单独调整零点位置。
    • 各并联基本节的误差互相不影响,故运算累积误差小。
    • 可进行并行运算,运算速度高。

2.5 转置定理

  对于单输入单输出系统,将原网络中所有支路方向倒转,并将输入 x ( n ) x\left(n\right) x(n) 和输出 y ( n ) y\left(n\right) y(n) 相互交换,则倒转后的结构与原结构的系统函数 H ( z ) H(z) H(z) 向相同。


3. FIR(Finite Impulse Response)数字滤波器的基本结构

  FIR 数字滤波器的结构特点
系 统 函 数 : H ( z ) = Y ( z ) X ( z ) = ∑ n = 0 N − 1 h ( n ) z − n 差 分 方 程 : y ( n ) = ∑ k = 0 N − 1 h ( k ) x ( n − k ) = h ( n ) ∗ x ( n ) \begin{aligned} &系统函数:H\left(z\right)=\frac{Y\left(z\right)}{X\left(z\right)}=\sum_{n=0}^{N-1}{h\left(n\right)z^{-n}}\\ &差分方程:y\left(n\right)=\sum_{k=0}^{N-1}h\left(k\right)x\left(n-k\right)=h\left(n\right)\ast x\left(n\right) \end{aligned} H(z)=X(z)Y(z)=n=0N1h(n)zny(n)=k=0N1h(k)x(nk)=h(n)x(n)

  • 系统的单位脉冲响应 h ( n ) h(n) h(n) 有限长( N N N 点);
  • 系统函数 H ( z ) H\left(z\right) H(z) ∣ z ∣ > 0 \left|z\right|>0 z>0 处收敛,有限 z z z 平面只有零点,全部极点在 z = 0 z=0 z=0 处(因果系统);
  • 没有输出到输入的反馈,一般为非递归型结构。

3.1 直接型(卷积型、横截型)

  由 FIR 数字滤波器的差分方程
y ( n ) = ∑ k = 0 N = 1 h ( k ) x ( n − k ) = h ( n ) ∗ x ( n ) y\left(n\right)=\sum_{k=0}^{N=1}h\left(k\right)x\left(n-k\right)=h\left(n\right)\ast x\left(n\right) y(n)=k=0N=1h(k)x(nk)=h(n)x(n)可得直接型 FIR 滤波器的流图
直接型 FIR 滤波器的流图

3.2 级联型

  当需要灵活方便地控制滤波器的传输零点时,可将 H ( z ) H\left(z\right) H(z) 分解成实系数二阶因式的乘积形式,表示为
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n = ∑ k = 1 ⌊ N 2 ⌋ ( β 0 k + β 1 k z − 1 + β 2 k z − 2 ) H\left(z\right)=\sum_{n=0}^{N-1}{h\left(n\right)z^{-n}}=\sum_{k=1}^{\left\lfloor\frac{N}{2}\right\rfloor}\left(\beta_{0k}+\beta_{1k}z^{-1}+\beta_{2k}z^{-2}\right) H(z)=n=0N1h(n)zn=k=12N(β0k+β1kz1+β2kz2)可得级联型 FIR 滤波器的流图
级联型 FIR 滤波器的流图

  • 级联型FIR滤波器的结构特点:
    • 由于这种结构所需的系数比直接型多,所需乘法运算也比直接型多,很少用。
    • 由于这种结构的每一节控制一对零点,因而通常仅在需要控制传输零点时用。

3.3 频率取样型

  系统函数 H ( z ) H\left(z\right) H(z) 在单位圆上作 N N N 等分取样的取样值就是 h ( n ) h\left(n\right) h(n) 的 DFT H ( k ) H\left(k\right) H(k)。由内插公式,用 H ( k ) H\left(k\right) H(k) 恢复 H ( z ) H\left(z\right) H(z) 的内插公式为
H ( z ) = ( 1 − z − N ) ⏟ H c ( z ) 1 N ∑ k = 0 N − 1 H ( k ) 1 − W N − k z − 1 ⏟ H k ( z ) H\left( z \right) =\underset{H_c\left( z \right)}{\underbrace{\left( 1-z^{-N} \right) }}\frac{1}{N}\sum_{k=0}^{N-1}{\underset{H_k\left( z \right)}{\underbrace{\frac{H\left( k \right)}{1-W_{N}^{-k}z^{-1}}}}} H(z)=Hc(z) (1zN)N1k=0N1Hk(z) 1WNkz1H(k)可见频率取样型 FIR 系统可用子 FIR 系统 H c ( z ) = 1 − z − N H_c\left(z\right)=1-z^{-N} Hc(z)=1zN 和子 IIR 系统 ∑ k = 0 N − 1 H k ( z ) \displaystyle\sum_{k=0}^{N-1}{H_k\left(z\right)} k=0N1Hk(z) 表示。

3.3.1 梳状滤波器 H c ( z ) H_c\left(z\right) Hc(z)

梳状滤波器
  子 FIR 系统 H c ( z ) = 1 − z − N H_c\left(z\right)=1-z^{-N} Hc(z)=1zN 是一个由 N N N 节延迟单元组成的梳状滤波器,在单位圆上有 N N N 个等分零点。可将梳状滤波器的频率响应写为
H c ( e j ω ) = H c ( z ) ∣ z = e j ω = 1 − e − j ω N = e − j ω N 2 ( e j ω N 2 − e − j ω N 2 ) = 2 j e − j ω N 2 sin ⁡ ω N 2 \begin{aligned} H_c\left(e^{j\omega}\right)&=\left.H_c\left(z\right)\right|_{z=e^{j\omega}}=1-e^{-j\omega N}\\ &=e^{-j\frac{\omega N}{2}}\left(e^{j\frac{\omega N}{2}}-e^{-j\frac{\omega N}{2}}\right)=2je^{-j\frac{\omega N}{2}}\sin{\frac{\omega N}{2}} \end{aligned} Hc(ejω)=Hc(z)z=ejω=1ejωN=ej2ωN(ej2ωNej2ωN)=2jej2ωNsin2ωN其幅频特性
∣ H c ( e j ω ) ∣ = 2 ∣ sin ⁡ ω N 2 ∣ \left|H_c\left(e^{j\omega}\right)\right|=2\left|\sin{\frac{\omega N}{2}}\right| Hc(ejω)=2sin2ωN

3.3.2 谐振柜 ∑ k = 0 N − 1 H k ( z ) \displaystyle\sum_{k=0}^{N-1}{H_k\left(z\right)} k=0N1Hk(z)

  子 IIR 系统 ∑ k = 0 N − 1 H k ( z ) \displaystyle\sum_{k=0}^{N-1}{H_k\left(z\right)} k=0N1Hk(z) 是由 N N N 个谐振器组成的谐振“柜”。每一个谐振器 H k ( z ) = H ( k ) 1 − W N − k z − 1 H_k\left(z\right)=\dfrac{H\left(k\right)}{1-W_N^{-k}z^{-1}} Hk(z)=1WNkz1H(k) 都是一个一阶网络,在单位圆上有一极点 z k = W N − k = e j 2 π N k z_k=W_N^{-k}=e^{j\frac{2\pi}{N}k} zk=WNk=ejN2πk,因此谐振器对频率为 ω = 2 π N k \omega=\dfrac{2\pi}{N}k ω=N2πk 的响应是 ∞ \infty ,是一个谐振频率为 2 π N k \dfrac{2\pi}{N}k N2πk 的无耗谐振器。并联谐振柜的极点正好各自抵消一个梳状滤波器的零点,从而使系统在频率点 ω = 2 π N k \omega=\dfrac{2\pi}{N}k ω=N2πk 的响应就是 H ( k ) H\left(k\right) H(k)

  将梳状滤波器和谐振柜级联可得到频率取样型 FIR 滤波器的结构
频率取样型 FIR 滤波器的结构

  • 频率取样型 FIR 滤波器的结构特点:
    • (优点)调整 H ( k ) H\left(k\right) H(k) 就可以有效地调整频响特性(在频率 ω k = 2 π N k \omega_k=\dfrac{2\pi}{N}k ωk=N2πk 处的响应即为 H ( k ) H\left(k\right) H(k))。
    • (优点)若 h ( n ) h\left(n\right) h(n) 长度相同,则除了各支路增益 H ( k ) H\left(k\right) H(k) 外网络结构完全相同,便于标准化、模块化。
    • (缺点)有限字长效应可能导致零极点不能完全对消(梳状滤波器的零点由延时器形成,并不受量化误差影响),导致系统不稳定。
    • (缺点)系数多为复数,增加了复数乘法和存储量。

3.3.3 修正频率取样型

  由于谐振器的所有极点均在单位圆上,当系数量化时,这些极点会移动,因此系统的稳定裕度为零,实际上是不能使用的。因此将所有谐振器的极点设置在半径 r r r 小于 1 1 1 又接近于 1 1 1 的圆周上,为了使得子 FIR 系统的零点需要和这些极点重合以相互抵消,故梳状滤波器的零点也移到半径r的圆周上。修正后的系统函数为
H ( z ) = 1 − r N z − N N ∑ k = 0 N − 1 H r ( k ) 1 − r W N − k z − 1 H\left(z\right)=\frac{1-r^Nz^{-N}}{N}\sum_{k=0}^{N-1}\frac{H_r\left(k\right)}{1-rW_N^{-k}z^{-1}} H(z)=N1rNzNk=0N11rWNkz1Hr(k)此时谐振柜的第 k k k 个谐振器的极点变为 r W N − k rW_N^{-k} rWNk,其中 H r ( k ) H_r\left(k\right) Hr(k) 是修正点的取样值,因为 r ≈ 1 r\approx1 r1,则
H r ( k ) = H ( z ) ∣ z = r W N − k = H ( r W N − k ) ≈ H ( W N − k ) = H ( k ) H_r\left(k\right)=\left.H\left(z\right)\right|_{z=rW_N^{-k}}=H\left(rW_N^{-k}\right)\approx H\left(W_N^{-k}\right)=H\left(k\right) Hr(k)=H(z)z=rWNk=H(rWNk)H(WNk)=H(k)则修正后的系统函数可近似为
H ( z ) = 1 − r N z − N N ∑ k = 0 N − 1 H ( k ) 1 − r W N − k z − 1 H\left(z\right)=\frac{1-r^Nz^{-N}}{N}\sum_{k=0}^{N-1}\frac{H\left(k\right)}{1-rW_N^{-k}z^{-1}} H(z)=N1rNzNk=0N11rWNkz1H(k)为了使系数是实数,将共轭根合并,这些共轭根在半径为r的圆周上以实轴对称分布。由对称性 z N − k = z k ∗ , W N − ( N − k ) = W N k = ( W N − k ) ∗ z_{N-k}=z_k^\ast,W_N^{-\left(N-k\right)}=W_N^k=\left(W_N^{-k}\right)^\ast zNk=zk,WN(Nk)=WNk=(WNk),将第 k k k 个和第 N − k N-k Nk 个谐振器合并成一个实系数的二阶网络
H k ( z ) ≈ H ( k ) 1 − r W N − k z − 1 + H ( N − k ) 1 − r W N − ( N − k ) z − 1 = H ( k ) 1 − r W N − k z − 1 + H ∗ ( k ) 1 − r ( W N − k ) ∗ z − 1 = H ( k ) + H ∗ ( k ) − H ( k ) r W N k z − 1 − H ∗ ( k ) r W N − k z − 1 1 − z − 1 ( W N − k + W N k ) + r 2 z − 2 = β 0 k + β 1 k z − 1 1 − z − 1 2 r cos ⁡ ( 2 π N k ) + r 2 z − 2 \begin{aligned} H_k\left(z\right)&\approx\frac{H\left(k\right)}{1-rW_N^{-k}z^{-1}}+\frac{H\left(N-k\right)}{1-rW_N^{-\left(N-k\right)}z^{-1}}=\frac{H\left(k\right)}{1-rW_N^{-k}z^{-1}}+\frac{H^\ast\left(k\right)}{1-r\left(W_N^{-k}\right)^\ast z^{-1}}\\ &=\frac{H\left(k\right)+H^\ast\left(k\right)-H\left(k\right)rW_N^kz^{-1}-H^\ast\left(k\right)rW_N^{-k}z^{-1}}{1-z^{-1}\left(W_N^{-k}+W_N^k\right)+r^2z^{-2}}\\ &=\frac{\beta_{0k}+\beta_{1k}z^{-1}}{1-z^{-1}2r\cos{\left(\frac{2\pi}{N}k\right)+r^2z^{-2}}} \end{aligned} Hk(z)1rWNkz1H(k)+1rWN(Nk)z1H(Nk)=1rWNkz1H(k)+1r(WNk)z1H(k)=1z1(WNk+WNk)+r2z2H(k)+H(k)H(k)rWNkz1H(k)rWNkz1=1z12rcos(N2πk)+r2z2β0k+β1kz1其中
{ β 0 k = 2 ℜ [ H ( k ) ] β 1 k = − 2 r ℜ [ H ( k ) W N k ] ,    { k = 1 , 2 , ⋯   , N − 1 2 ,    k 为 奇 数 k = 1 , 2 , ⋯   , N 2 , k 为 偶 数 \begin{cases} \beta_{0k}=2\Re{\left[H\left(k\right)\right]}\\ \beta_{1k}=-2r\Re{\left[H\left(k\right)W_N^k\right]} \end{cases},\ \ \begin{cases} \begin{aligned} k&=1,2,\cdots,\frac{N-1}{2},\ \ &k为奇数\\ k&=1,2,\cdots,\frac{N}{2},&k为偶数 \end{aligned} \end{cases} {β0k=2[H(k)]β1k=2r[H(k)WNk],  kk=1,2,,2N1,  =1,2,,2N,kk修正频率取样型
  当 N N N 为偶数时,除了共轭根,还有一对实数根,分别位于 k = 0 , N 2 k=0,\dfrac{N}{2} k=0,2N 两点,则此时系统函数为
H ( z ) = ( 1 − r N z − N ) ⋅ 1 N ⋅ [ H 0 ( z ) + H N 2 ( z ) + ∑ k = 1 N 2 − 1 H k ( z ) ] H\left(z\right)=\left(1-r^Nz^{-N}\right)\cdot\frac{1}{N}\cdot\left[H_0\left(z\right)+H_\frac{N}{2}\left(z\right)+\sum_{k=1}^{\frac{N}{2}-1}{H_k\left(z\right)}\right] H(z)=(1rNzN)N1H0(z)+H2N(z)+k=12N1Hk(z)  当 N N N 为奇数时,除了共轭根,只有一个实数根,位于 k = 0 k=0 k=0 处,则此时系统函数为
H ( z ) = ( 1 − r N z − N ) ⋅ 1 N ⋅ [ H 0 ( z ) + ∑ k = 1 N − 1 2 H k ( z ) ] H\left(z\right)=\left(1-r^Nz^{-N}\right)\cdot\frac{1}{N}\cdot\left[H_0\left(z\right)+\sum_{k=1}^{\frac{N-1}{2}}{H_k\left(z\right)}\right] H(z)=(1rNzN)N1H0(z)+k=12N1Hk(z)在上两式中
H 0 ( z ) = H ( 0 ) 1 − r z − 1 ,    H N 2 ( z ) = H ( N 2 ) 1 + r z − 1 H_0\left(z\right)=\frac{H\left(0\right)}{1-rz^{-1}},\ \ H_\frac{N}{2}\left(z\right)=\frac{H\left(\dfrac{N}{2}\right)}{1+rz^{-1}} H0(z)=1rz1H(0),  H2N(z)=1+rz1H(2N)则修正频率取样型 FIR 滤波器的结构为
修正频率取样型 FIR 滤波器的结构

  • 修正频率取样型 FIR 滤波器的结构特点:
    • 结构有递归部分——谐振柜;又有非递归部分——梳状滤波器。
    • 它的零、极点数目只取决于单位脉冲响应的长度,因而单位脉冲响应长度相同。利用同一梳状滤波器、同一结构而只有加权系数 β 0 k , β 1 k , H ( 0 ) , H ( N 2 ) \beta_{0k},\beta_{1k},H\left(0\right),H\left(\dfrac{N}{2}\right) β0k,β1k,H(0),H(2N) 不同的谐振器,就能得到不同的滤波器。
    • 其结构可以高度模块化,可时分复用。

3.4 线性相位型

  线性相位的因果FIR系统的单位取样响应满足
h ( n ) = ± h ( N − 1 − n ) h\left(n\right)=\pm h\left(N-1-n\right) h(n)=±h(N1n)即序列要么是奇对称的,要么是偶对称的。

  当 N N N 为奇数时,系统函数可表示为
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n = ∑ n = 0 N − 1 2 − 1 h ( n ) z − n + h ( N − 1 2 ) z N − 1 2 + ∑ n = N − 1 2 + 1 N − 1 h ( n ) z − n = ∑ n = 0 N − 1 2 − 1 h ( n ) [ z − n ± z − ( N − 1 − n ) ] + h ( N − 1 2 ) z N − 1 2 \begin{aligned} H\left(z\right)&=\sum_{n=0}^{N-1}{h\left(n\right)z^{-n}}=\sum_{n=0}^{\frac{N-1}{2}-1}{h\left(n\right)z^{-n}}+h\left(\frac{N-1}{2}\right)z^\frac{N-1}{2}+\sum_{n=\frac{N-1}{2}+1}^{N-1}{h\left(n\right)z^{-n}}\\ &=\sum_{n=0}^{\frac{N-1}{2}-1}h\left(n\right)\left[z^{-n}\pm z^{-\left(N-1-n\right)}\right]+h\left(\frac{N-1}{2}\right)z^\frac{N-1}{2} \end{aligned} H(z)=n=0N1h(n)zn=n=02N11h(n)zn+h(2N1)z2N1+n=2N1+1N1h(n)zn=n=02N11h(n)[zn±z(N1n)]+h(2N1)z2N1  当 N N N 为偶数时,系统函数可表示为
H ( z ) = ∑ n = 0 N − 1 h ( n ) z − n = ∑ n = 0 N 2 − 1 h ( n ) z − n + ∑ n = N 2 N − 1 h ( n ) z − n = ∑ n = 0 N 2 − 1 h ( n ) [ z − n ± z − ( N − 1 − n ) ] H\left(z\right)=\sum_{n=0}^{N-1}{h\left(n\right)z^{-n}}=\sum_{n=0}^{\frac{N}{2}-1}{h\left(n\right)z^{-n}}+\sum_{n=\frac{N}{2}}^{N-1}{h\left(n\right)z^{-n}}=\sum_{n=0}^{\frac{N}{2}-1}h\left(n\right)\left[z^{-n}\pm z^{-\left(N-1-n\right)}\right] H(z)=n=0N1h(n)zn=n=02N1h(n)zn+n=2NN1h(n)zn=n=02N1h(n)[zn±z(N1n)]当序列 h ( n ) h\left(n\right) h(n) 偶对称时,取“ + + +”号;当序列奇对称时,取“ − - ”号。则线性相位型 FIR 滤波器的结构为
线性相位型 FIR 滤波器的结构

3.5 快速卷积型(略)


上一篇:Part 5——部分 FFT 蝶形图
下一篇:Part 7——数字滤波器设计

  • 1
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
MATLAB7.x数字信号处理 ex1_1 单位冲激序列 ex1_2 右移20单位冲激序列 ex1_3 单位阶跃序列 ex1_4 实指数序列 ex1_5 复指数序列 ex1_6 随机序列 ex1_7 系统冲激响应impz函数 ex1_8 系统传递函数freqz函数 ex1_9 零极点增益 ex1_10 residuez函数应用 ex1_11 Lattice结构全极点IIR系统 ex1_12 Lattice结构全零点FIR系统 ex1_13 Lattice结构零极点结构 ex2_1 利用Z变换求系统输出 ex2_2 求DFT ex2_3 求序列圆周移位 ex2_4 求序列圆周卷积 ex2_5 简单DFT实例 ex3_2 求系统阶跃响应 ex3_3 级联型系统结构参数求解 ex3_4 并联型系统结构参数求解 ex3_5 求系统频率抽样型结构 ex3_6 全零点性滤波器Lattic结构 ex3_7 全极点性滤波器Lattic结构 ex3_8 零极点性滤波器Lattic结构 ex4_2 用MATLAB作巴特沃斯低通滤波器设计 ex4_3 用MATLAB作切比雪夫-1型低通滤波器设计 ex4_4 切比雪夫-2型低通滤波器设计 ex4_5 椭圆型低通滤波器设计 ex4_6 传递函数模拟滤波器数字化 ex4_7 脉冲不变法简单实例 ex4_8 脉冲不变法巴特沃思低通滤波器设计 ex4_9 脉冲不变法变换切比雪夫Ⅰ型低通滤波器设计 ex4_10 脉冲不变法变换切比雪夫Ⅱ型低通滤波器设计 ex4_11 脉冲响应不变法椭圆低通滤波器设计 ex4_12 双线性变换巴特沃思低通滤波器设计 ex4_13 双线性变换切比雪夫Ⅰ型低通滤波器设计 ex4_14 双线性变换切比雪夫-2低通滤波器设计 ex4_15 双线性变换椭圆低通滤波器设计 ex4_17 切比雪夫-1高通滤波器设计—ZMAPPING函数应用 ex4_18 椭圆带通滤波器设计—ELLIP函数应用 ex4_19 切比雪夫-2带阻滤波器设计—CHEBY2函数应用 ex4_20 利用Z平面简单零极点法设计一个高通滤波器 ex5_1 I-型线性相位FIR滤波器 ex5_2 II-型线性相位FIR滤波器 ex5_3 III-型线性相位FIR滤波器 ex5_4 IV-型线性相位FIR滤波器 ex5_5 矩形窗频响 ex5_6 希尔伯特变换器设计-汉宁窗 ex5_7 低通滤波器设计-汉明窗 ex5_8 带通滤波器设计-布莱克曼窗 ex5_9 低通滤波器设计-凯塞窗 ex5_11 频率采样技术:低通,朴素法 ex5_12 频率采样技术:低通, 最优法T1 & T2 ex5_13 频率采样技术:带通, 最优法T1 & T2 ex5_14 频率采样技术:高通, 最优法T1 ex5_15 频率采样技术:差分器 ex5_16 频率采样技术: 希尔伯特变换器 ex5_17 利用Parks-McClella算法设计低通滤波器 ex5_18 用PM算法进行带通滤波器设计 ex5_19 用PM算法进行高通滤波器设计 ex5_20 用PM算法进行阶梯滤波器设计 ex5_21 用PM算法进行差分器设计 ex5_22 用PM算法进行希尔伯特变换器设计 ex6_1 ~ ex6_3二项分布随机数据产生 ex6_4 ~ ex6_6通用函数计算概率密度函数值 ex6_7 ~ ex6_20常见分布密度函数 ex6_21 ~ ex6_33随机变量数字特征 ex6_34 采用periodogram函数来计算功率谱 ex6_35 利用FFT直接法计算上面噪声信号功率谱 ex6_36 利用间接法重新计算上例中噪声信号功率谱 ex6_37 采用tfe函数来进行系统辨识,并与理想结果进行比较 ex6_38 在置信度为0.95区间上估计有色噪声xPSD ex6_39 在置信度为0.95区间上估计两个有色噪声x,yCSD ex6_40 用程序代码来实现Welch方法功率谱估计 ex6_41 用Welch方法进行PSD估计,并比较当采用不同窗函数时结果 ex6_42 用Yule-Walker AR法进行PSD估计 ex6_43 用Burg算法计算AR模型参数 ex6_44 用Burg法PSD估计 ex6_45 比较协方差方法与改进协方差方法在功率谱估计中效果 ex6_46 用Multitaper法进行PSD估计 ex6_47 用MUSIC法进行PSD估计 ex6_48 用特征向量法进行PSD估
书名:数字信号处理(第二版)——高等学校电子信息类规划教材 作者:丁玉美 出版社:西安电子科技大学出版社 出版日期:2001年01月 页数:318 ISBN:9787560609225[十位:7560609228] 定价:21.00元 内容提要: 本书是在1994年编写数字信号处理》(全国统编教材)基础上重新修订,属数字信号处理基本理论和分析基础书,系电子信息类部级重点规划教材。 全书共10章,第一章:时域离散信号和时域离散系统;第二章:时域离散信号和系统频域分析,包括傅里对变换和Z变换;第三、四章:离散傅里叶交换、快速傅里叶交换;第五章:时域离散系统基本网络结构与状态变量分析法;第六、七章:无限脉冲响应数字滤波器设计、有限脉冲响应数字滤波器设计;第八章:其它类型数字滤波器,包括全通滤波器、梳状滤波器、格型滤波器以及抽取与插值滤波等;第九章:数字信号处理实现,包括实现中量化误差分析、软件实现和硬件实现;第十章:上机实验,包括四个试验实验指导。每章后有习题。 本书可作为无线电技术类专业本科生必修课教材,或者相近专业本科、大专生必修课或选修课教材,也可作为有关科技人员数字信号处理理论基础参考书。 为便于教与学,本书学习指导书已出版,书中含有习题解答。 图书目录: 绪论 第一章 时域离散信号和时域离散系统 1.1 引言 1.2 时域离散信号 1.3 时域离散系统 1.4 时域离散系统输入输出描述法——线性常系数差分方程 1.5 模拟信号数字处理方法 习题 第二章 时域离散信号和系统频域分析 2.1 引言 2.2 序列傅里叶变换定义及性质 2.3 周期序列离散傅里叶级数及傅里叶变换表示式 2.4 时域离散信号傅里叶变换与模拟信号傅里叶变换关系 2.5 序列Z变换 2.6 利用Z变换分析信号和系统频域特性 习题 第三章 离散傅里叶变换(DFT) 3.1 离散傅里叶变换定义 3.2 离散傅里叶变换基本性质 3.3 频率域采样 3.4 DFT应用举例 习题 第四章 快速傅里叶变换(FFT) 4.1 引言 4.2 基2 FFT算法 4.3 进一步减少运算量措施 4.4 分裂基FFT算法 4.5 离散哈特莱变换(DHT) 习题 第五章 时域离散系统基本网络结构与状态变量分析法 5.1 引言 5.2 用信号流图表示网络结构 5.3 无限长脉冲响应基本网络结构 5.4 有限长脉冲响应基本网络结构 5.5 状态变量分析法 习题 第六章 无限脉冲响应数字滤波器设计 6.1 数字滤波器基本概念 6.2 模拟滤波器设计 6.3 用脉冲响应不变法设计IIR数字低通滤波器 6.4 用双线性变换法设计IIR数字低通滤波器 6.5 数字高通、带通和带阻滤波器设计 6.6 IIR数字滤波器直接设计法 习题 第七章 有限脉冲响应数字滤波器设计 7.1 线性相位FIR数字滤波器条件和特点 7.2 利用窗函数法设计FIR滤波器 7.3 利用频率采样法设计FIR滤波器 7.4 利用切比雪夫逼近法设计FIR滤波器 7.5 IIR和FIR数字滤波器比较 习题 第八章 其它类型数字滤波器 8.1 几种特殊滤波器 8.2 格型滤波器 8.3 简单整系数数字滤波器 8.4 采样率转换滤波器 习题 第九章 数字信号处理实现 9.1 数字信号处理量化效应 9.2 数字信号处理技术软件实现 9.3 数字信号处理技术硬件实现 第十章 上机实验 10.1 引言 10.2 关于实验用计算机语言 10.3 实验一:信号、系统及系统响应 10.4 实验二:用FFT作谱分析 10.5 实验三:用双线性变换法设计IIR数字滤波器 10.6 实验四:用窗函数法设计FIR数字滤波器 附录 附录A 用Masson公式求网络传输函数H(z) 附录B 矩阵幂和逆矩阵计算方法 附录C 实验用MATLAB工具箱函数简介 附录D FHT程序清单(FORTRAN) 参考文献
<p style="color:#333333;"> <strong> </strong> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="color:#337FE5;">[为什么要学习Spring Cloud微服务]</span> </strong> </p> <p style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="color:#4D555D;"></span> </strong> </p> <p class="ql-long-24357476" style="font-family:"color:#222226;font-size:14px;background-color:#FFFFFF;"> <strong><span style="font-family:"background-color:#FFFFFF;">SpringCloud作为主流微服务框架,<span style="color:#4D555D;">已成为各互联网公司首选框架,国内外企业占有率持续攀升,</span>是Java工程师必备技能。</span><span style="font-family:"background-color:#FFFFFF;">就连大名鼎鼎阿里巴巴</span><span style="font-family:"background-color:#FFFFFF;">dubbo</span><span style="font-family:"background-color:#FFFFFF;">也正式更名为</span><span style="font-family:"background-color:#FFFFFF;">Spring Cloud Alibaba</span><span style="font-family:"background-color:#FFFFFF;">,成为了</span><span style="font-family:"background-color:#FFFFFF;">Spring Cloud </span><span style="font-family:"background-color:#FFFFFF;">微服务中一个子模块。</span><span style="font-family:"background-color:#FFFFFF;"></span><span style="font-family:"background-color:#FFFFFF;">Spring Cloud是企业架构转型、个人能力提升、架构师进阶不二选择。</span> </strong> </p> <p style="color:#333333;"> <strong><strong><br /> </strong> </strong> </p> <strong><span style="font-family:"color:#337FE5;font-size:14px;background-color:#FFFFFF;">【推荐你学习这门课理由】</span><br /> </strong> <p> <br /> </p> <p> <span>1、</span><span style="color:#222226;font-family:"font-size:14px;background-color:#FFFFFF;">本课程总计</span><span style="background-color:#FFFFFF;">29</span><span style="color:#222226;font-family:"font-size:14px;background-color:#FFFFFF;">课时,<span style="color:#333333;">从微服务是什么、能够做什么开始讲起,绝对零基础入门</span></span><span></span> </p> <p> <span style="background-color:#FFFFFF;">2、<span style="color:#333333;">课程附带全部26个项目源码,230页高清PDF正版课件</span><span style="color:#333333;"></span></span> </p> <p> <span style="background-color:#FFFFFF;"><b><br /> </b></span> </p> <p> <span style="background-color:#FFFFFF;"><b><span style="color:#337FE5;">【课程知识梳理】</span></b></span> </p> <p> <span style="background-color:#FFFFFF;"><b>1、</b></span><span style="color:#333333;">先讲解了什么是单体架构、什么是微服务架构、他们间有什么区别和联系,各自有什么优缺点。</span> </p> <p> <span style="color:#333333;">2、</span><span style="color:#333333;">从本质入手,使用最简单Spring Boot搭建微服务,让你认清微服务是一种思想和解决问题手段,而不是新兴技术。</span> </p> <p style="color:#333333;"> 3、讲解Spring Boot 与Spring Cloud 微服务架构联系,原生RestTemplate工具,以及Actuator监控端点使用。 </p> <p style="color:#333333;"> 4、带着微服务所带来各种优缺点,为大家引入服务发现与注册概念和原理,从而引入我们第一个注册中心服务Eureka。 </p> <p style="color:#333333;"> 5、引入负载均衡理念,区分什么是服务端负载均衡,什么是客户端负载均衡,进而引入Ribbon负载均衡组件详细使用。 </p> <p style="color:#333333;"> 6、为了解决微服务间复杂调用,降低代码复杂度,我们引入了Feign声明式客户端,让你几行代码搞定服务远程调用。 </p> <p style="color:#333333;"> 7、最后为大家介绍了整个微服务体系应该包含什么,学习路线是什么,应该学习什么。 </p> <p style="color:#333333;"> <strong><br /> </strong> </p> <p style="color:#333333;"> <strong><span style="color:#337FE5;">【</span><strong><span style="color:#337FE5;">学习方法</span></strong><span style="color:#337FE5;"></span><span style="color:#337FE5;">】</span></strong> </p> <p style="color:#333333;"> 每一节课程均有代码,最好方式是静下心来,用一天时间,或者两个半天时间来学习。 </p> <p style="color:#333333;"> 一边听我讲解,一边使用我提供项目代码进行观察和运行。 </p> <p style="color:#333333;"> 只要你能跟住我节奏,你就可以搞定微服务。 </p> <br />
<div style="color:rgba(0,0,0,.75);"> <span style="color:#4d4d4d;"> </span> <div style="color:rgba(0,0,0,.75);"> <span style="color:#4d4d4d;"> </span> <div style="color:rgba(0,0,0,.75);"> <div style="color:rgba(0,0,0,.75);"> <span style="color:#4d4d4d;">当前课程中商城项目实战源码是我发布在 GitHub 上开源项目 newbee-mall 新蜂商城,目前已有 6300 多个 star,</span><span style="color:#4d4d4d;">本课程是一个 Spring Boot 技术栈实战类课程,课程共分为 3 大部分,前面两个部分为基础环境准备和相关概念介绍,第三个部分是 Spring Boot 商城项目功能讲解,让大家实际操作并实践上手一个大型线上商城项目,并学习到一定开发经验以及其中开发技巧。<br /> 商城项目所涉及功能结构图整理如下:<br /> </span> </div> <div style="color:rgba(0,0,0,.75);">   </div> <div style="color:rgba(0,0,0,.75);"> <p style="color:#4d4d4d;"> <img alt="modules" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3N0b3JlL25ld2JlZS1tYWxsLXMucG5n?x-oss-process=image/format,png" /> </p> </div> <p style="color:rgba(0,0,0,.75);"> <strong><span style="color:#e53333;">课程特色</span></strong> </p> <p style="color:rgba(0,0,0,.75);">   </p> <div style="color:rgba(0,0,0,.75);">   </div> <div style="color:rgba(0,0,0,.75);"> <ul> <li> 对新手开发者十分友好,无需复杂操作步骤,仅需 2 秒就可以启动这个完整商城项目 </li> <li> 最终实战项目是一个企业级别 Spring Boot 大型项目,对于各个阶段 Java 开发者都是极佳选择 </li> <li> 实践项目页面美观且实用,交互效果完美 </li> <li> 教程详细开发教程详细完整、文档资源齐全 </li> <li> 代码+讲解+演示网站全方位保证,向 Hello World 教程说拜拜 </li> <li> 技术栈新颖且知识点丰富,学习后可以提升大家对于知识理解和掌握,可以进一步提升你市场竞争力 </li> </ul> </div> <p style="color:rgba(0,0,0,.75);">   </p> <p style="color:rgba(0,0,0,.75);"> <span style="color:#e53333;">课程预览</span> </p> <p style="color:rgba(0,0,0,.75);">   </p> <div style="color:rgba(0,0,0,.75);">   </div> <div style="color:rgba(0,0,0,.75);"> <p style="color:#4d4d4d;"> 以下为商城项目页面和功能展示,分别为: </p> </div> <div style="color:rgba(0,0,0,.75);"> <ul> <li> 商城首页 1<br /> <img alt="" src="https://img-bss.csdnimg.cn/202103050347585499.gif" /> </li> <li> 商城首页 2<br /> <img alt="" src="https://img-bss.csdn.net/202005181054413605.png" /> </li> <li>   </li> <li> 购物车<br /> <img alt="cart" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3Byb2R1Y3QvY2FydC5wbmc?x-oss-process=image/format,png" /> </li> <li> 订单结算<br /> <img alt="settle" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3Byb2R1Y3Qvc2V0dGxlLnBuZw?x-oss-process=image/format,png" /> </li> <li> 订单列表<br /> <img alt="orders" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3Byb2R1Y3Qvb3JkZXJzLnBuZw?x-oss-process=image/format,png" /> </li> <li> 支付页面<br /> <img alt="" src="https://img-bss.csdn.net/201909280301493716.jpg" /> </li> <li> 后台管理系统登录页<br /> <img alt="login" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3Byb2R1Y3QvbWFuYWdlLWxvZ2luLnBuZw?x-oss-process=image/format,png" /> </li> <li> 商品管理<br /> <img alt="goods" src="https://imgconvert.csdnimg.cn/aHR0cHM6Ly9uZXdiZWUtbWFsbC5vc3MtY24tYmVpamluZy5hbGl5dW5jcy5jb20vcG9zdGVyL3Byb2R1Y3QvbWFuYWdlLWdvb2RzLnBuZw?x-oss-process=image/format,png" /> </li> <li> 商品编辑<br /> <img alt="" src="https://img-bss.csdnimg.cn/202103050348242799.png" /> </li> </ul> </div> </div> </div> </div>
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值